Chapter 9

Autocorrelation in Quality Control

What is Autocorrelation?

- Autocorrelation measures the correlation between a time series and its lagged values (previous time points).
- It helps identify patterns or dependencies in the data over time.
- Autocorrelation Function (ACF): Shows the correlation of the time series with its own lags.

$$ext{ACF}(h) = rac{ ext{Cov}(Y_t, Y_{t+h})}{\sqrt{ ext{Var}(Y_t) \cdot ext{Var}(Y_{t+h})}}$$

• Where h is the lag at which we measure the correlation.

Components of ARIMA Models

• AR (Autoregressive): Relates the current value of the series to its previous values.

$$Y_t = \alpha_0 + \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + \cdots + \alpha_p Y_{t-p} + \epsilon_t$$

• I (Integrated): Difference the data to make it stationary.

$$Y_t' = Y_t - Y_{t-1}$$

• MA (Moving Average): Models the error term as a linear combination of past error terms.

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

ARIMA Model Notation

- ARIMA(p, d, q): A time series model where:
 - p is the order of the AR part (number of lagged values).
 - d is the degree of differencing required to achieve stationarity.
 - q is the order of the MA part (number of lagged forecast errors).

Stationary Time Series

- A time series is stationary if its statistical properties do not change over time (mean, variance, autocovariance).
- Stationarity condition: Autocovariance function $\gamma(h)$ should depend only on the lag h and **not** on the time t.
 - Mean (μ) is constant over time:

$$E(Y_t) = \mu \quad \forall t$$

- Variance (σ^2) is constant over time:

$$\operatorname{Var}(Y_t) = \sigma^2 \quad \forall t$$

-Autocovariance (γ) depends only on the lag h, not time t:

$$Cov(Y_t, Y_{t+h}) = \gamma(h) \quad \forall t, h$$

Finite Order AR and MA Processes

• AR(1) Process:

$$Y_t = \alpha_0 + \phi_1 Y_{t-1} + \epsilon_t$$

• MA(1) Process:

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1}$$

• ARMA(p, q) combines both AR and MA components.

$$Y_t = lpha_0 + \sum_{i=1}^p \phi_i Y_{t-i} + \sum_{i=1}^q heta_i \epsilon_{t-i} + \epsilon_t$$

Nonstationary Time Series and Differencing

- Nonstationary Time Series: A series where mean and variance change over time.
- Differencing: Makes nonstationary data stationary by subtracting previous values.
- ARIMA(p, d, q) models nonstationary data where differencing (d) is applied.

$$-For d=1$$
:

$$-For d=2$$
:

$$\Delta^2 Y_t = \Delta Y_t - \Delta Y_{t-1}$$

 $Y_t' = Y_t - Y_{t-1}$

– In general:

$$\Delta^d Y_t = \sum_{k=0}^d \binom{d}{k} (-1)^k Y_{t-k}$$

Statistical Tests for Stationarity

- · Augmented Dickey-Fuller (ADF) Test
 - $-H_0$: The series is nonstationary.
 - $-H_1$: The series is stationary.

$$\Delta Y_t = lpha + eta t + \gamma Y_{t-1} + \sum_{i=1}^p \phi_i \Delta Y_{t-i} + \epsilon_t$$

$$-\Delta Y_t = Y_t - Y_{t-1}$$

- $-\gamma$ is the coefficient of interest
- Interpretation:
 - If γ is significantly negative (p-value < 0.05), reject H_0 ; the series is stationary.

ARIMA Model Identification

- Partial Autocorrelation Function (PACF): Helps identify the AR(p) part.
 - PACF shows the correlation after removing the effect of shorter lags.
- Augmented Dickey-Fuller (ADF) Test: Helps to identify the appropriate differencing d to achieve a stationary time series.
 - ADF shows the appropriate stationary value of the series.
- Autocorrelation Function (ACF): Helps identify the MA(q) part.
 - ACF shows the correlation of the series with its lags.

ARIMA Model Identification

- Partial Autocorrelation Function (PACF)
 - Remove the influence of intermediate lags, providing a clearer picture of the direct relationship between a variable and its past values.

$$\phi_k = \frac{\text{cov}(X_t, X_{t-k} | X_{t-1}, X_{t-2}, \dots, X_{t-k+1})}{\sqrt{\text{var}(X_t | X_{t-1}, X_{t-2}, \dots, X_{t-k+1}) \cdot \text{var}(X_{t-k} | X_{t-1}, X_{t-2}, \dots, X_{t-k+1})}}$$

- Autocorrelation Function (ACF):
 - Measures the linear relationship between a time series and its lagged values.

$$\rho_k = \frac{\operatorname{Cov}(X_t, X_{t-k})}{\sqrt{\operatorname{Var}(X_t) \cdot \operatorname{Var}(X_{t-k})}}$$

Building an ARIMA Model

- 1. Plot the Time Series:
 - A plot reveals a trend, indicating the series might not be stationary.
- 2. Check for Stationarity (ADF Test):
 - -If p>0.05, fail to reject H_0 , and conclude the series is nonstationary.
- 3. Differencing to Achieve Stationarity:
 - Compute differenced value (starting from one), to reach stationarity (d).
- 4. Plot ACF and PACF of the Stationary Series:
 - PACF helps identify p (AR terms).
 - ACF helps identify q (MA terms).

Building an ARIMA Model

- 5. Estimate Parameters:
 - Using statistical software (e.g., R or Python)
- 6. Residual Analysis:
 - Check if residuals are white noise (uncorrelated and normally distributed).
 - Box-Ljung Test (If p-value>0.05, fail to reject H_0 , and conclude residuals are white noise.)
 - $-H_0$: The data is not correlated.

$$Q=n(n+2)\sum_{k=1}^h\frac{\hat{\rho}_k^2}{n-k}$$

- $-H_1$: The data exhibit serial correlation.
- -For significance level α , the critical region for rejection of the hypothesis of randomness is: $Q > \chi^2_{1-\alpha,h}$
- 7. Enjoy your model ©

ARIMA Model Identification

Model	ACF	PACF
MA(q)	Cuts off after lag q	Exponential decay and/or damped sinusoid
AR(p)	Exponential decay and/or damped sinusoid	Cuts off after lag p
ARMA(p,q)	Exponential decay and/or damped sinusoid	Exponential decay and/or damped sinusoid

Autocorrelation in Quality Control

- SPC traditionally assumes independent observations.
- Autocorrelation in data, common in sequential measurements, requires adjusted SPC methods.
- Types of Autocorrelation:
 - Mild Autocorrelation: Typically occurs in processes with low-frequency measurements.
 - Moderate Autocorrelation: Observed in more closely spaced measurements, with significant correlation at smaller lags.
 - Complex (High) Autocorrelation: Seen in continuous or high-frequency data, with persistence across multiple time lags.

Measuring Autocorrelation

- · Overview of autocorrelation, focusing on how it is measured and interpreted.
- Equations:
 - Autocorrelation at lag k:

$$\rho_k = \frac{\operatorname{Cov}(x_t, x_{t-k})}{V(x_t)} \quad k = 0, 1, \dots$$

- Sample Autocorrelation Function:

$$r_{k} = \frac{\sum_{t=1}^{n-k} (x_{t} - \overline{x})(x_{t-k} - \overline{x})}{\sum_{t=1}^{n} (x_{t} - \overline{x})^{2}} \quad k = 0, 1, \dots, K$$

Measuring Autocorrelation

- Interpretation by Degree:
 - -Mild: r_k quickly declines as k increases (e.g., weekly data with minimal persistence).
 - -Moderate: r_k shows slow decay, indicating moderate persistence across multiple lags.
 - Complex: Strong and sustained r_k across several lags, such as in data sampled every second in automated systems

Autoregressive Models for Autocorrelated Processes

- Autoregressive (AR) models are useful for handling mild and moderate autocorrelation.
- AR models are best for relatively simple, predictable autocorrelation structures
- AR(1) model:

$$x_t = \phi x_{t-1} + \epsilon_t, \quad |\phi| < 1$$

- Applications by Degree:
 - Mild Autocorrelation: AR(1) or AR(2) models can effectively capture patterns.
 - Moderate Autocorrelation: AR models (AR(3) or AR(4)) may be required.
 - Complex Autocorrelation: Higher-order AR or ARIMA models are required.

Process Monitoring with Residual Control Charts

- Using residuals from AR models to create de-autocorrelated data for SPC.
- Residual calculation:

$$e_t = x_t - \phi x_{t-1}$$

- · Key Points:
 - Mild Autocorrelation: Residuals from a simple AR(1) model often suffice.
 - Moderate Autocorrelation: Higher-order AR models help in producing accurate residuals.
 - Complex Autocorrelation: For complex structures, ARIMA may be required before residual plotting to stabilize control charts.

EWMA Chart for Mild to Moderate Autocorrelation

- EWMA control charts, suitable for monitoring processes with mild to moderate autocorrelation.
 - EWMA statistic:

$$z_t = \lambda x_t + (1 - \lambda) z_{t-1}$$

- Interpretation by Degree:
 - Mild Autocorrelation: Small values of λ provide appropriate smoothing.
 - -Moderate Autocorrelation: Adjust λ to balance sensitivity while accounting for persistence in data.
- EWMA is less effective for complex autocorrelation, where ARIMA or batch means may be needed for greater accuracy

ARIMA Models for Complex Autocorrelation

- ARIMA (Autoregressive Integrated Moving Average) models are useful for complex autocorrelation.
 - ARIMA(1,0,1) model example:

$$x_t = \phi x_{t-1} + heta \epsilon_{t-1} + \epsilon_t$$

- · Application
 - Complex (High) Autocorrelation: ARIMA models handle mixed autoregressive and moving average structures, capturing long-range dependencies.
- Continuous data with periodic patterns, like chemical processes with both shortand long-term dependencies

Selecting Charts Based on Autocorrelation Degree

- Decision-making process for selecting SPC methods based on autocorrelation degree.
 - Mild Autocorrelation: Use residual charts from AR(1) or EWMA charts.
 - Moderate Autocorrelation: Use residual charts from AR models or apply EWMA with adjusted smoothing.
 - Complex Autocorrelation: Apply ARIMA or batch means control charts, depending on data collection frequency and persistence

A Process Variable with Autocorrelation

Related Shewhart Charts

Control Charts of the Residuals (ARIMA)

• Example 10.2. Figure presents a control chart for individual measurements applied to viscosity measurements from a chemical process taken every hour.

Control Charts of the Residuals

- · Solution 10.2.
- The sample autocorrelation function for the viscosity data is:
- There is a strong positive correlation.
- Autocorrelation is sufficiently high to distort greatly the performance of a Shewhart control chart.
- Correlation greatly increases the frequency of false alarms, so we should be very suspicious about the out-of-control signals on the control chart.

Control Charts of the Residuals (ARIMA)

- The parameters in the autoregressive model may be estimated by the method of least squares.
- · The fitted value of this model for the viscosity data is

$$x_t = 13.04 + 0.847x_{t-1}$$

 Figure is an individual's control chart of the residuals from the fitted first-order autoregressive model.

Control Charts of the Residuals (ARIMA)

Control Charts of the Residuals (EWMA)

· Consider that:

$$\hat{x}_{t+1}(t) = z_t$$

$$z_t = \lambda x_t + (1 - \lambda)z_{t-1}$$

• The sequence of one-step-ahead prediction errors:

$$e_t = x_t - \hat{x}_t(t-1)$$

• It is independently and identically distributed with mean zero.

Control Charts of the Residuals (EWMA)

- The parameter λ (or equivalently, θ) would be found by minimizing the sum of squares of the errors e_t
- The least squared prediction error occurs at λ = 0.825.

Control Charts of the Residuals (EWMA)

Batch Means Control Chart

- Runger and Willemain (1996) proposed a control chart based on unweighted batch means for monitoring autocorrelated process data.
- The Unweighted Batch Means (UBM) control chart breaks successive groups of sequential observations into batches, with equal weights assigned to every point in the batch.
- · Let the jth unweighted batch mean be

$$\overline{x}_j = \frac{1}{b} \sum_{i=1}^b x_{(j-1)b+i} \quad j = 1, 2, \dots$$

 Suitable for high-frequency or continuous sampling, where autocorrelation persists over multiple lags

Batch Means Control Chart

1	2	3	4	5
X11 X12 X13 X14	X21 X22 X23 X24	X11 X12 X13 X14 X15	X11 X12 X13 X14 X15	X11 X12 X13 X14 X15

UBM Control Chart

 In Figure a plot of batch means computed using b = 10.

• Related sample autocorrelation function:

UBM Control Chart

• The general indication is that the process is stable.

