Chapter 9

Autocorrelation in Quality Control

What is Autocorrelation?

* Autocorrelation measures the correlation between a time series and its lagged
values (previous time points).

» It helps identify patterns or dependencies in the data over time.
*» Autocorrelation Function (ACF): Shows the correlation of the time series with

its own lags.

Cov(Y:, Yiin)

ACF(h) =
( ] \/VAI(Y!) : Var(_Yer)

» Where h is the lag at which we measure the correlation.
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Components of ARIMA Models

* AR (Autoregressive): Relates the current value of the series to its previous
values.

Yi=ataYiataYiot+- -+ apYip+ e

» I (Integrated): Difference the data to make it stationary.

Y/ = Y- Y

* MA (Moving Average): Models the error term as a linear combination of past
error terms.

Yi=p+e+0i1e )+ 06 2+ ---+ 0464

ARIMA Model Notation

* ARIMA(p, d, q): A time series model where:
— p is the order of the AR part (number of lagged values).
— d is the degree of differencing required to achieve stationarity.
— q 1s the order of the MA part (number of lagged forecast errors).
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Stationary Time Series

* A time series is stationary if its statistical properties do not change over time
(mean, variance, autocovariance).

» Stationarity condition: Autocovariance function y(h) should depend only on the
lag h and not on the time 1.
— Mean (u) is constant over time:

E(Y;)=p Vt
— Variance (6°) is constant over time:
Var(Y;) = o® Wt
— Autocovariance (y) depends only on the lag h, not time {:

Cov(Y:, Yiin) = v(h) Vt,h

Finite Order AR and MA Processes
» AR(1) Process:

Yi=ao+ $1Yi1 + e
 MA(1) Process:

Yi=p+ e+ 016

* ARMA(p, q) combines both AR and MA components.

P q
Y, =ag+ Z &Y + Z Oiei—i + €
i-1 i-1
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Nonstationary Time Series and Differencing

* Nonstationary Time Series: A series where mean and variance change over
lime.

* Differencing: Makes nonstationary data stationary by subtracting previous
values.

* ARIMA(p, d, q) models nonstationary data where differencing (d) is applied.

—Ford=1I:
Y=Y -Y,
—For d=2:
A%Y, = AY, - AY;,
—In general:

d

A=) (i)(—l)*‘mk

k=0

Statistical Tests for Stationarity

» Augmented Dickey-Fuller (ADF) Test
— H,: The series is nonstationary.

— H,;: The series is stationary.

— Test Statistic: p
AY, =a+ pt+Y1 + Zti’:‘AYt—i + €&
*AYr:YI_Yr—I =l

—y is the coefficient of interest

* Interpretation:
—If y is significantly negative (p-value < 0.05), reject H,,; the series is stationary.
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ARIMA Model Identification

* Partial Autocorrelation Function (PACF): Helps identify the AR(p) part.
— PACF shows the correlation after removing the effect of shorter lags.

» Augmented Dickey-Fuller (ADF) lest: Helps to identify the appropriate
differencing d to achieve a stationary time series.

— ADF shows the appropriate stationary value of the series.

* Autocorrelation Function (ACF): Helps identify the MA(q) part.

— ACF shows the correlation of the series with its lags.

ARIMA Model Identification

* Partial Autocorrelation Function (PACF)

— Remove the influence of intermediate lags, providing a clearer picture of the direct
relationship between a variable and its past values.

— cov(Xe, Xt p|Xt—1,Xt—2,-, Xt—ki1)
\/V&r(Xf | Xt—1,Xt—2y000s Xt et 1) vVar(Xe—p| Xe—1,Xt—2,00 s Xt —n41)

Ok

» Autocorrelation Function (ACF):

— Measures the linear relationship between a time series and its lagged values.

_ Cov(Xt, Xt—#)
\/Var(Xr )-Var(X;_x)

Pk
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Building an ARIMA Model

1. Plot the Time Series:
— A plot reveals a trend, indicating the series might not be stationary.

Check for Stationarity (ADF Test):
—If p>0.03, fail to reject H,, and conclude the series is nonstationary.

35

3. Differencing to Achieve Stationarity:
— Compute differenced value (starting from one), to reach stationarity (d).

4. Plot ACF and PACF of the Stationary Series:
— PACF helps identify p (AR terms).
— ACF helps identify q (MA terms).

Building an ARIMA Model

5. Estimate Parameters:
— Using statistical software (e.g., R or Python)
6. Residual Analysis:
— Check if residuals are white noise (uncorrelated and normally distributed).
— Box-Ljung Test (If p-value>0.03, fail to reject H,, and conclude residuals are white
noise.) " -
—H,: The data is not correlated. Q =n(n+2) Z Pk z
— H,: The data exhibit serial correlation. k=1 """
— For significance level a, the critical region for rejection of the hypothesis of
randomness is: Q > xi

7. Enjoy your model ©



ARIMA Model Identification
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Model

ACF

PACF

MA(q)
AR(p)

ARMA(p.q)

Cuts off after lag g

Exponential decay and/or damped
sinusoid

Exponential decay and/or damped
sinusoid

Exponential decay and/or
damped sinusoid
Cuts off after lag p

Exponential decay and/or
damped sinusoid
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Model Sample ACF Sample PACF

AR(2)
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Autocorrelation in Quality Control

» SPC traditionally assumes independent observations.

* Autocorrelation in data, common in sequential measurements, requires adjusted
SPC methods.
* Types of Autocorrelation:
—Mild Autocorrelation: Typically occurs in processes with low-frequency
measurements.
— Moderate Autocorrelation: Observed in more closely spaced measurements, with
significant correlation at smaller lags.
— Complex (High) Autocorrelation: Seen in continuous or high-frequency data, with
persistence across multiple time lags.

Measuring Autocorrelation

* Overview of autocorrelation, focusing on how it is measured and interpreted.

» Equations:
— Autocorrelation at lag k:

— COV("“: » X )

) = k=01
p{ V(l:) 3

— Sample Autocorrelation Function:

k=0.1...,K
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Measuring Autocorrelation

» Interpretation by Degree:

—Mild: v, quickly declines as k increases (e.g., weekly data with minimal
persistence).

- [t : yHOWS SlOW  Indicating n "a 1Y 1C10SS 1
Moderate: v, shows slow decay, indicating moderate persisience across multiple
lags.

— Complex: Strong and sustained v, across several lags, such as in data sampled
every second in automated systems

Autoregressive Models for Autocorrelated Processes

* Autoregressive (AR) models are useful for handling mild and moderate
autocorrelation.

* AR models are best for relatively simple, predictable autocorrelation structures

* AR(1) model:
T =@z 1+ &, |P<1

* Applications by Degree:
— Mild Autocorrelation: AR(1) or AR(2) models can effectively capture patterns.
— Moderate Autocorrelation: AR models (AR(3) or AR(4)) may be required.
— Complex Autocorrelation: Higher-order AR or ARIMA models are required.

10
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Process Monitoring with Residual Control Charts

* Using residuals from AR models to create de-autocorrelated data for SPC.
* Residual calculation:
er = Tt — PTt-1
» Key Points:
— Mild Autocorrelation: Residuals from a simple AR(1) model often suffice.

— Moderate Autocorrelation: Higher-order AR models help in producing accurate
residuals.

— Complex Autocorrelation: For complex structures, ARIMA may be required before
residual plotting to stabilize control charts.

EWMA Chart for Mild to Moderate Autocorrelation

» EWMA control charts, suitable for monitoring processes with mild to moderate
autocorrelation.

— EWMA statistic:

Zt ;AIt—:'—(l —A)Zt. 1

* Interpretation by Degree:
— Mild Autocerrelation: Small values of / provide appropriate smoothing.
— Moderate Autocorrelation: Adjust /. to balance sensitivity while accounting for
persistence in data.

» EWMA is less effective for complex autocorrelation, where ARIMA or batch
means may be needed for greater accuracy

i i
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ARIMA Models for Complex Autocorrelation

* ARIMA (Autoregressive Integrated Moving Average) models are usefil for
complex autocorrelation.
— ARIMA(1,0,1) model example:

:I:,;(,ﬁl'f 1"‘963.1"‘6(

* Application
— Complex (High) Autocorrelation: ARIMA models handle mixed autoregressive
and moving average structures, capturing long-range dependencies.

* Continuous data with periodic paiterns, like chemical processes with both short-
and long-term dependencies

Selecting Charts Based on Autocorrelation Degree

* Decision-making process for selecting SPC methods based on autocorrelation
degree.
— Mild Autocorrelation: Use residual charts from AR(1) or EWMA charts.
— Moderate Autocorrelation: Use residual charts from AR models or apply EWMA
with adjusted smoothing.
— Complex Autocorrelation: Apply ARIMA or batch means control charts, depending
on data collection frequency and persistence

12



2/14/2025

A Process Variable with Autocorrelation
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Control Charts of the Residuals (ARIMA)

» Example 10.2. Figure presents a control chart for individual measurements
applied to viscosity measurements from a chemical process taken every hour.

110 ¢

0 10 20 30 40 50 60 70 80 90 100
Time, ¢

Control Charts of the Residuals

* Solution 10.2.
» The sample autocorrelation function for the viscosity data is.
* There is a strong posilive correlation. |

* Autocorrelation is sufficiently high

to distort greatly the performance 05 -
of a Shewhart control chart. ﬁ

* Correlation greatly increases the
frequency of false alarms, so we
should be very suspicious about
the out-of-control signals on
the control chart. 1 O

Lag, k

14
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Control Charts of the Residuals (ARIMA)

» The parameters in the autoregressive model may be estimated by the method of
least squares.

» The fitted value of this model for the viscosity data is
x, =13.04+0.847x,_,

* Figure is an individual's control chart of the residuals from the fitted first-order
autoregressive model.

Control Charts of the Residuals (ARIMA)
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Control Charts of the Residuals (EWMA)

» Consider that:
xr+l(r ) =&

E;zlxr'*' (] _A-)Zr—]

* The sequence of one-step-ahead prediction errors:

e, =x,—x,(t—1)

& [t is independently and identically distributed with mean zero.

Control Charts of the Residuals (EWMA)

 The parameter 4 (or equivalently, 0) would be found by minimizing the sum of
squares of the errors e,
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Control Charts of the Residuals (EWMA)
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Batch Means Control Chart

* Runger and Willemain (1996) proposed a control chart based on unweighted
batch means for monitoring autocorrelated process data.

» The Unweighted Batch Means (UBM) control chart breaks successive groups
of sequential observations into batches, with equal weights assigned to every
point in the batch.

* Let the j"" unweighted batch mean be

. - :
Xj- =E§-r(j_l)b+f J= ],2,.-.

» Suitable for high-frequency or continuous sampling, where autocorrelation
persists over multiple lags

17



Batch Means Control Chart
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* Related sample autocorrelation
Jfunction:
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UBM Control Chart

*» The general indication is that the process is stable.
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