Chapter 10

Troubleshooting and Improvement

Traditional Quality Improvement Tool

- They are mostly qualitative and used in qualitative researches.
- Some of the dominant quality improvement techniques are as follows:
 - Pareto chart
 - Ishikawa diagram (cause-and-effect, root cause analysis, fishbone diagram)
 - DMAIC process
 - PDCA cycle
 - FMEA (Failure Modes and Effects) method
 - QFD (Quality Function Deployment) approach
 - -5 Whys
 - -5S
 - Kaizen
 - Kanban

Pareto Chart

- Definition: A Pareto chart is a type of bar graph that ranks categories in descending order to highlight the most significant factors influencing a particular outcome.
- Purpose: To identify and prioritize the factors contributing to a problem or opportunity for improvement.
- Named after Italian economist Vilfredo Pareto, who observed the 80/20 principle 80% of effects come from 20% of causes.

https://asq.org/quality-resources/pareto

Pareto Chart

Components

- Vertical bars representing the frequency or impact of each category.
- Cumulative percentage line showing the cumulative contribution of categories.
- Categories listed in descending order of frequency or impact.
- Y-axis showing frequency or impact, X-axis showing categories.

Pareto chart of costs / FIGURE 6

https://asq.org/quality-progress/articles/case-studies/budgetary-bandage?id=ed288e642d46433daa92ded28fe97f78

Ishikawa Diagram

- Definition: An Ishikawa diagram, also known as a fishbone diagram or causeand-effect diagram, is a visual tool used to identify and analyze the potential causes of a specific problem or effect.
- Purpose: To facilitate brainstorming and root cause analysis by organizing potential causes into categories for further investigation.
- Named after Japanese quality control expert Kaoru Ishikawa, who developed the diagram in the 1960s.

Ishikawa Diagram

Components

- Main problem or effect placed at the head of the fishbone.
- -Major categories (e.g., people, process, equipment, materials, environment) branching off as "bones."
- Subcategories or specific causes under each major category.

DMAIC process

- Definition: The DMAIC process, which stands for Define, Measure, Analyze, Improve, and Control, is a structured problem-solving methodology used to improve processes and drive quality improvement in various industries.
- Purpose To identify and eliminate defects or inefficiencies in a process by following a systematic approach.
- Key elements Each phase of the DMAIC process contributes to the overall goal of reducing variation and enhancing process performance.

DMAIC process

- Components
 - Define:
 - Clearly define the problem or opportunity for improvement.
 - Set project goals and objectives.
 - Measure:
 - Collect data on current process.
 - Identify critical metrics for measurement.
 - Analyze:
 - Analyze data to determine root of issues.
 - Identify variations and potential sources of defects.
 - Improve:
 - Develop solutions to address root causes.
 - Implement changes to improve the process.
 - Control:
 - Establish control measures to sustain improvements.
 - Monitor ongoing performance using key metrics.

DMAIC process

- Example: A pharmaceutical company faces inconsistent product quality leading to rejections during quality testing stages which hindered time-to-market deadlines
 - Define phase: Company defines that they are facing issues because there is considerable variation within their production line causing inconsistent product outcomes up rejections during quality testing stages
 - Measure Phase: The team collects data from different production lines regarding temperature fluctuations and raw material composition
 - Analyze Phase: Team analyzes collected data using statistical methods like regression analysis identifying key parameters affecting product consistency
 - Improve Phase: Based on identified factors modifying equipment parameters and standardizing raw composition leads them towards more consistent products
 - Control Phase: Establishment new control measures such as creating tighter specifications around ranges and raw material compositions ensuring continuous monitoring through statistical techniques

PDCA Cycle

- Definition: The PDCA Cycle, also known as the Plan-Do-Check-Act Cycle, is a continuous improvement methodology used to address problems, make changes, and improve processes systematically.
- Purpose: To identify areas for improvement, implement changes, monitor results, and make adjustments for ongoing improvement.
- Key elements: Each phase of the PDCA Cycle contributes to the overall goal of continuous improvement and quality control.

PDCA Cycle

- Components
 - Plan:
 - Identify the problem or opportunity for improvement.
 - Set objectives and develop a plan to address the issue.
 - Do:
 - Implement the plan and carry out the actions outlined in the planning phase.
 - Check:
 - Assess the results of the actions taken during the "Do" phase.
 - Compare actual outcomes to planned objectives.
 - Act:
 - Take corrective actions based on the results of the "Check" phase.
 - Adjust the plan or implement changes to improve processes further.

FMEA Method

- Definition: Failure Mode and Effects Analysis (FMEA) is a structured methodology used to identify potential failure modes in a system, process, or product, assess the impact of those failures, and prioritize actions to mitigate risks.
- Purpose: To proactively identify and address potential failures, prioritize improvement efforts, and enhance overall quality and reliability.
- Key elements: FMEA involves identifying failure modes, determining the severity, occurrence, and detection ratings for each failure mode, calculating risk priority numbers (RPNs), and developing action plans to address high-risk areas.

https://asq.org/quality-resources/fmea

FMEA Method

Components

- Identify potential failure modes: List all possible ways in which a process or product can fail.
- Assess severity: Rate the potential impact of each failure mode on customer satisfaction, safety, and product quality.
- -Evaluate occurrence: Determine how frequently each failure mode is likely to occur.
- Analyze detection: Assess the likelihood of detecting each failure mode before it impacts the customer.
- Calculate Risk Priority Numbers (RPNs): Multiply severity, occurrence, and detection ratings to prioritize failure modes.
- Develop action plans: Prioritize high-RPN failure modes and implement actions to reduce risks and improve quality.

QFD Approach

- Definition: Quality Function Deployment (QFD) is a systematic method used to translate customer requirements into specific design and production processes. It helps organizations prioritize customer needs, align their processes accordingly, and improve overall quality control.
- Purpose: To ensure that products or services meet or exceed customer expectations by integrating customer requirements throughout the entire product development and production process.
- Key elements: QFD involves capturing voice of the customer, translating it into design requirements, prioritizing those requirements, and deploying them across various stages of product development.

QFD Approach

Components

- Voice of Customer (VoC): Gathering data on customers' needs, preferences, and expectations through surveys, interviews, focus groups etc., to identify key quality characteristics.
- -House of Quality (HoQ): A matrix-based tool used to translate VoC into measurable design parameters while also considering relationships between different parameters.
- Prioritization Matrix: Ranking design parameters based on their importance as perceived by customers to guide decision-making during product development.
- Cross-functional Collaboration: Involving various departments like marketing, engineering, manufacturing etc., in the QFD process to ensure alignment between customer needs and internal processes.

QFD Approach

- Example: A software company applies QFD principles to improve quality control in its software development process.
 - Voice of the Customer (VoC) Analysis:
 - Collecting feedback from end-users on desired features/functionality/quality aspects.
 - Analyzing market research data for insights into user preferences.
 - House of Quality (HoQ):
 - Mapping user requirements onto technical characteristics for software development.
 - Identifying correlations between user desires and technical attributes.
 - Prioritization Matrix:
 - Assigning weights/importance levels to different user requirements based on survey data or expert opinions.
 - Assessing trade-offs between conflicting priorities during software development.
 - Cross-functional Collaboration:
 - Involving developers, testers & designers in collaborative sessions for requirement analysis & planning.
 - Sharing knowledge/experience across teams involved in different stages of software production.

5 Whys

- Definition: The 5 Whys is a problem-solving technique used to identify the root cause of an issue by asking "why" multiple times to uncover deeper layers of causation.
- Purpose: To systematically analyze and address the underlying reasons for quality issues, defects, or failures in processes or products.
- Key elements: The 5 Whys method involves asking "why" five times (or more) to trace the cause-and-effect relationships leading to a particular problem, enabling organizations to implement effective corrective actions.

5 Whys

- Example: An automotive manufacturing company applies the 5 Whys method to address recurring defects in a specific part of the production process.
 - ✓ Problem: Defective parts are being produced.
 - Why? The machine used for shaping the parts is malfunctioning.
 - Why? The machine maintenance schedule has not been followed.
 - Why? The maintenance staff is not adequately trained to perform scheduled maintenance.
 - Why? There is no standardized training program for maintenance staff.
- Corrective Actions:
 - Implement a standardized training program for maintenance staff.
 - Develop a robust maintenance schedule and ensure adherence.
 - Regularly monitor machine performance to detect issues early.

55

- Definition: 5S is a methodology for organizing, cleaning, developing and sustaining a productive work environment. It consists of five principles: Sort, Set in Order, Shine, Standardize, and Sustain.
- Purpose: To improve efficiency, safety, and quality by creating an organized and standardized work environment.
- Key elements: The 5S methodology aims to eliminate waste, reduce errors, and enhance overall workplace effectiveness.

5S

- Components
 - -Sort (Seiri): Separating necessary items from unnecessary ones and removing the latter from the work area.
 - Set in Order (Seiton): Organizing and arranging necessary items in a logical and efficient manner for easy access.
 - Shine (Seiso): Cleaning and maintaining the work area to ensure cleanliness and safety.
 - Standardize (Seiketsu): Establishing standardized processes and procedures for maintaining the first three S's.
 - -Sustain (Shitsuke): Continuously maintaining and improving the 5S practices through employee training and regular audits.

55

- Example: A manufacturing facility implements 5S principles to improve quality control in the production process.
 - Sort: Identify and remove unnecessary tools and materials from the production area to reduce clutter and improve workflow.
 - Set in Order: Organize tools, equipment, and materials in designated locations to minimize search time and enhance efficiency.
 - Shine: Implement regular cleaning schedules to maintain a clean and safe working environment, reducing the risk of contamination or defects.
 - Standardize: Develop standardized procedures for equipment maintenance, material handling, and workspace organization to ensure consistency.
 - Sustain: Train employees on 5S principles and conduct regular audits to ensure continuous adherence to the practices.

Kaizen

- Definition: Kaizen is a Japanese business philosophy that focuses on continuous improvement through small, incremental changes in processes, products, and systems.
- Purpose: To achieve ongoing improvements in quality, productivity, and efficiency by involving all employees in the process of identifying and implementing improvements.
- Key elements: Kaizen emphasizes the importance of employee involvement, standardized processes, and a culture of continuous improvement.

Kaizen

Components

- Continuous Improvement: Encouraging small, ongoing changes to improve processes and systems.
- Standardization: Developing and maintaining standardized processes to ensure consistency and quality.
- Employee Involvement: Engaging all employees in identifying improvement opportunities and implementing changes.
- Elimination of Waste: Identifying and eliminating waste in all forms to improve efficiency and reduce costs.
- Quality Focus: Emphasizing the importance of producing high-quality products and services.

Kaizen

- Example: A manufacturing company applies Kaizen principles to enhance quality control in its production processes.
 - Continuous Improvement: Implementing small, incremental changes to production processes to reduce defects and improve product quality.
 - Standardization: Developing standardized quality control procedures and checklists to ensure consistent product quality.
 - Employee Involvement: Encouraging employees to identify quality issues and suggest improvements, fostering a culture of continuous improvement.
 - Elimination of Waste: Identifying and reducing waste in production processes to improve efficiency and quality.
 - Quality Focus: Emphasizing the importance of meeting quality standards and continuously striving for improvement.

Kanban

- Definition: Kanban is a visual scheduling system used to control and manage work as it moves through a process. It helps to optimize workflow, minimize lead time, and improve efficiency.
- Purpose: To enable a smooth and continuous flow of work, reduce overproduction, and facilitate just-in-time production.
- Key elements: Kanban emphasizes visual management, limiting work in progress, and continuous improvement.

Kanban

Components

- Visual Management: Using visual signals, such as cards or boards, to represent work items and their status in the production process.
- Work in Progress (WIP) Limits: Setting limits on the number of tasks or items that can be in progress at any given time to prevent overloading the system.
- Pull System: Work is pulled into the system based on demand rather than being pushed through the process, ensuring a more efficient flow.
- Continuous Improvement: Encouraging ongoing improvements in the workflow and processes based on feedback and data.

Kanhan

- Example: A manufacturing company applies Kanban principles to improve quality control in its production processes.
 - Visual Management: Using Kanban boards to visualize the status of quality control tasks, such as inspections and testing, at each stage of the production process.
 - Work in Progress (WIP) Limits: Setting limits on the number of products in the quality control phase to ensure that resources are not overextended and that each product receives adequate attention.
 - Pull System: Quality control tasks are triggered based on demand, ensuring that products move through the quality control process at an optimal pace.
 - Continuous Improvement: Using data from Kanban boards to identify bottlenecks or areas for improvement in the quality control process.

